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Föhringer Ring 6, 80805 München, Germany

E-mail: gcardoso@theorie.physik.uni-muenchen.de,

oberreuter@theorie.physik.uni-muenchen.de,

perz@theorie.physik.uni-muenchen.de

Abstract: We use the relation between extremal black hole solutions in five- and in four-

dimensional N = 2 supergravity theories with cubic prepotentials to define the entropy

function for extremal black holes with one angular momentum in five dimensions. We

construct two types of solutions to the associated attractor equations.

Keywords: Black Holes in String Theory, Black Holes.

c© SISSA 2007 http://jhep.sissa.it/archive/papers/jhep052007025/jhep052007025.pdf

mailto:gcardoso@theorie.physik.uni-muenchen.de
mailto:oberreuter@theorie.physik.uni-muenchen.de
mailto:perz@theorie.physik.uni-muenchen.de
http://jhep.sissa.it/stdsearch


J
H
E
P
0
5
(
2
0
0
7
)
0
2
5

Contents

1. Introduction 1

2. Extremal black holes in five and four dimensions 2

3. Entropy function for rotating extremal black holes in five dimensions 3

3.1 Rotating electrically charged black holes in five dimensions 4

3.2 Attractor equations and examples 8

4. Conclusions 10

A. N = 2 supergravity actions and dimensional reduction 11

1. Introduction

An important feature of extremal black holes in the presence of scalar fields is that these

fields attain fixed values at the horizon which are determined by the black hole charges.

These values are found by solving a set of so-called attractor equations, which were first

given in [1 – 4] in the context of supersymmetric black holes. The attractor equations can be

obtained from a variational principle based on an entropy function [5, 6]. The value of the

entropy function at the stationary point yields the macroscopic entropy of the black hole.

Extremal black holes in five dimensions can be related to extremal black holes in four

dimensions. This connection is implemented by placing the five-dimensional black hole in

a Taub-NUT geometry, and by using the modulus of the Taub-NUT space to interpolate

between the five and the four-dimensional description. In the vicinity of the NUT charge,

spacetime looks five-dimensional, whereas far away from the NUT the spacetime looks

four-dimensional. This connection was first established in [7, 8] for supersymmetric black

holes in the context of N = 2 supergravity theories that in four dimensions are based on

cubic prepotentials, and was further discussed in [9].

In the following, we focus on rotating extremal black holes in five dimensions which

are connected to static extremal black holes in four dimensions in the way described above.

We use this link to define the entropy function for these rotating black hole solutions in the

context of N = 2 supergravity theories with cubic prepotentials. In four dimensions, the

static extremal black holes we consider carry charges (P I , QI), where P 0 6= 0 corresponds

to the NUT charge in five dimensions. These four-dimensional black holes are connected

to rotating five-dimensional black holes with one independent angular momentum parame-

ter. The five-dimensional N = 2 supergravity theories contain Chern-Simons terms for the

abelian gauge fields, so that the definition of the entropy function given in [5, 6] cannot
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be directly applied whenever these terms play a role for the given background. Therefore,

we define the entropy function for these rotating five-dimensional black holes to equal the

entropy function of the associated static black holes in four dimensions. The latter was

computed for N = 2 supergravity theories in [10, 11]. Then, we specialize to the case of

black holes with non-vanishing charges (P 0, QI), which in five dimensions correspond to

rotating electrically charged extremal black holes in a Taub-NUT geometry. Extremization

of the entropy function yields a set of attractor equations for the various parameters charac-

terizing the near-horizon solution. We check that these attractor equations are equivalent

to the equations of motion in five dimensions evaluated in the black hole background. We

construct two types of solutions to the attractor equations and we compute their entropy.

Our approach for defining the entropy function in the presence of Chern-Simons terms

is based on dimensional reduction, and is therefore similar to the approach used in [12] for

defining the entropy function of the three-dimensional BTZ black hole. Related results for

rotating AdS5 black holes have appeared in [13].

2. Extremal black holes in five and four dimensions

Extremal black holes in five dimensions can be connected to extremal black holes in four

dimensions, as described in the introduction. In the following, we focus on rotating black

holes in five dimensions which are connected to static black holes in four dimensions. The

associated near-horizon geometries are related by dimensional reduction over a compact

direction of radius R. In the context of five-dimensional theories based on n abelian gauge

fields AA
5 and real scalar fields XA (A = 1, . . . , n) coupled to gravity, the reduction is based

on the following standard formulae (see for instance [14]),

ds2
5 = e2φ ds2

4 + e−4φ (dx5 − A0
4)

2 , dx5 = R dψ ,

AA
5 = AA

4 + CA (dx5 − A0
4) ,

X̂A = e−2φ XA , (2.1)

where the AI
4 denote the four-dimensional abelian gauge fields (with I = 0, A).

We will focus on N = 2 supergravity theories that are based on cubic prepotentials in

four dimensions. As we review in appendix A, the rescaled scalar fields X̂A and the Kaluza-

Klein scalars CA are combined into the four-dimensional complex scalar fields zA [14],

zA = CA + iX̂A . (2.2)

We take the fields CA and X̂A, and hence also zA, to be dimensionless.

The near-horizon geometry of the rotating five-dimensional black hole is taken to be a

squashed AdS2 × S3 given by [13]

ds2
5 = v1

(

− r2dt2 +
dr2

r2

)

+
v2

4

(

dθ2 + sin2 θ dϕ2
)

+
v2v3

4
(dψ + cos θ dϕ − α rdt)2 , (2.3)

where θ ∈ [0, π], ϕ ∈ [0, 2π), ψ ∈ [0, 4π). The parameters v1, v2, v3 and α are constant.

The near-horizon geometry of the associated static four-dimensional black hole is of the
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AdS2 × S2 type,

ds2
4 = ṽ1

(

− r2dt2 +
dr2

r2

)

+ ṽ2

(

dθ2 + sin2 θ dϕ2
)

(2.4)

with constant parameters ṽ1 and ṽ2. Using (2.1), we find the following relations,

e−4φ =
v2v3

4R2
,

A0
4 = R (− cos θdϕ + αrdt) , (2.5)

as well as

ṽ1 = v1

√

v2v3

4R2
, ṽ2 =

v2

4

√

v2v3

4R2
, (2.6)

and hence

ṽ1 ṽ2 =
v1 v2

2 v3

16R2
,

ṽ1

ṽ2
= 4

v1

v2
. (2.7)

We denote the electric fields in four and five dimensions by Frt = e. Hence, we rewrite A0
4

as

A0
4 = e0

4 r dt − p0R cos θdϕ , (2.8)

with e0
4 = αR and the NUT charge p0 = 1.

3. Entropy function for rotating extremal black holes in five dimensions

The entropy function of [5, 6] is derived from the reduced Lagrangian. The reduced La-

grangian F is obtained by evaluating the Lagrangian in the near-horizon black hole back-

ground and integrating over the horizon. In five and four dimensions,

F5 =

∫

dψ dθ dφ
√
−GL5 ,

F4 =

∫

dθ dφ
√−gL4 . (3.1)

In the presence of Chern-Simons terms, however, the definition of the entropy function

given in [5, 6] is not directly applicable whenever these terms play a role for the given

background. This is the situation encountered in N = 2 supergravity theories in five

dimensions, but not in four dimensions. Therefore, we use dimensional reduction to define

the entropy function E5 for rotating black holes in five dimensions in terms of the entropy

function E4 for the associated four-dimensional black holes,

E5 = E4 . (3.2)
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3.1 Rotating electrically charged black holes in five dimensions

Here we consider rotating electrically charged extremal black hole solutions in N = 2 su-

pergravity theories in five dimensions. The bosonic part of the five-dimensional Lagrangian

is given by (A.6). The black hole solutions carry NUT charge p0 = 1 as well as electric

charges qA. The near-horizon solution is specified in terms of constant scalars XA, the line

element (2.3) and the five-dimensional gauge potentials AA
5 ,

AA
5 = eA

5 r dt + CA R (dψ + cos θdϕ) , (3.3)

where FA
rt = eA

5 denotes the electric field in five dimensions. Both eA
5 and CA are constant.

These five-dimensional rotating extremal black holes are connected to static electrically

charged extremal black holes in four dimensions with constant scalars zA, line element (2.4)

and four-dimensional gauge potentials AI
4 given by (2.8) and

AA
4 = eA

4 r dt . (3.4)

The five- and four-dimensional electric fields are related by

eA
5 = eA

4 − CA e0
4 = eA

4 − αR CA (3.5)

according to (2.1). In our conventions, the electric fields in five and four dimensions have

length dimension one.

As reviewed in appendix A, the five- and four-dimensional actions (A.6) and (A.10)

are identical upon dimensional reduction over x5, up to boundary terms which are usually

discarded and which arise when integrating the Chern-Simons term in (A.6) by parts.

However, when evaluating these actions in a background with constant CA, as is the case

for the near-horizon solutions under consideration, they are not any longer equal to one

another. Namely, evaluating the Chern-Simons term in (A.6) for constant CA, and using

FA
5 = FA

4 − CA F 0
4 (see (2.1)), we obtain with the help of (A.18)

CABC FA
5 ∧ FB

5 ∧ AC
5 =

1

2
R dψ d4x

√−g ReNIJ F I
4 F̃ J

4 (3.6)

−RCABC

(

CA CB FC
4 − 2

3
CA CB CC F 0

4

)

∧ F 0
4 ∧ dψ .

Thus, the actions differ by

8π (S5 − S4) =
1

6G4

∫

d4x
√−g ReNIJ F I

4 F̃ J
4

+
1

6G4

∫

CABC

(

CA CB FC
4 − 2

3
CA CB CC F 0

4

)

∧ F 0
4 . (3.7)

Similarly, in the background specified by (3.3), the reduced Lagrangians (3.1) differ by

F5 −F4 =
1

12G4
R CABC CA CB eC

4 . (3.8)

This has to be taken into account when using (3.2) to define the entropy function in five

dimensions in terms of E4. The entropy function of static extremal black holes in four
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dimensions is the Legendre transform of the reduced Lagrangian F4 with respect to the

electric fields and reads [5]

E4 = 2π

(

−1

2
eI
4 QI G

−1/2
4 −F4

)

, (3.9)

where we denote the four-dimensional electric charges by QI . The normalizations are as

in [10, 11], with the additional G
−1/2
4 to ensure that E4 is dimensionless. Using (3.5), (3.8)

and (3.2), we now express (3.9) as

E5 = 2π

[

−1

2
α

(

J + R CA

(

qA G
−1/3
5 − 2π R2

3G5
CABC CB CC

))

−1

2
eA
5

(

qA G
−1/3
5 − 2π R2

3G5
CABC CB CC

)

−F5

]

, (3.10)

where the five-dimensional quantities (J, qA) are given in terms of the four-dimensional

electric charges (Q0, QA) by

J = Q0 R G
−1/2
4 ,

qA G
−1/3
5 = QA G

−1/2
4 . (3.11)

In (3.18) below, J will be related to the angular momentum in five-dimensions. Observe

that in the presence of the CA, the electric charges qA are shifted by a term proportional

to CABC CB CC . This shift, which is due to (3.8) and thus has its origin in the presence

of the Chern-Simons term in the five-dimensional action (A.6), has also been observed

in [13]. In addition, we note that J also gets shifted by terms involving CA. This shift

ensures that extrema of E5 satisfy all the five-dimensional equations of motion. This we now

demonstrate by explicitly checking the equation of motion for AA
5ψ , as follows. Using (3.3),

we compute

F5 = π
v1 (v3

2 v3)
1/2

4G5

[

− 1

v1
+

4 − v3

v2
+

v2 v3 α2

16v2
1

+
GAB eA

5 eB
5

2v2
1

− 8R2 GAB CA CB

v2
2

]

− 2π

3G5
R2 CABC CA CB eC

5 . (3.12)

Then, varying the entropy function E5 with respect to the electric fields eA
5 and setting

∂eE5 = 0 yields

π

4G5

(v3
2 v3)

1/2

v1
GAB eB

5 = −1

2
q̂A , (3.13)

while varying with respect to CA and setting ∂CE5 = 0 gives

−α

2
q̂A +

2πR

G5
CABC CB eC

5 +
4πR

G5

v1(v
3
2 v3)

1/2

v2
2

GABCB = 0 , (3.14)

where we introduced

q̂A = qA G
−1/3
5 − 2πR2

G5
CABC CB CC , (3.15)
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for convenience. Combining (3.13) and (3.14) results in

α
(v3

2 v3)
1/2

v1
GAB eB

5 + 8R CABC CB eC
5 + 16R

v1(v
3
2 v3)

1/2

v2
2

GABCB = 0 , (3.16)

which is precisely the equation of motion for AA
5ψ evaluated in the black hole background.

Observe that when α qA 6= 0, then generically also CA 6= 0. We also note that when

expressed in terms of four-dimensional quantities, q̂A equals q̂A = G
−1/2
4

(

QA − ReNA0 P 0
)

,

where P 0 is given by (3.30).

The entropy function (3.10) depends on a set of constant parameters, namely

eA
5 ,XA, CA, v1, v2, v3 and α, whose horizon values are determined by extremizing E5. To

this end, we compute the (remaining) extremization equations. Inserting (3.13) into (3.10)

gives

E5 = 2π α

[

−1

2
J − 1

2
R CA

(

qA G
−1/3
5 − 2πR2

3G5
CABC CB CC

)]

+ G5
v1

(v3
2 v3)1/2

q̂A GAB q̂B

− π2

2G5
v1(v

3
2 v3)

1/2

[

− 1

v1
+

4 − v3

v2
+

v2 v3α
2

16v2
1

− 8R2 GABCACB

v2
2

]

. (3.17)

Demanding ∂αE5 = 0 results in the expression for the angular momentum,

π

32G5

v
5/2
2 v

3/2
3

v1
α = −1

2
J − 1

2
R CA

(

qA G
−1/3
5 − 2πR2

3G5
CABC CB CC

)

. (3.18)

Computing ∂vi
E5 = 0 (with i = 1, 2, 3), we obtain

v1 =
v2

4
,

v2 v3

[

2v2 + v2 v3(1 − 2α2)
]

=
2G2

5

π2
q̂A GAB q̂B ,

2v2 − v2v3(2 − α2) = 8R2 GAB CA CB . (3.19)

Observe that the first of these conditions yields ṽ1 = ṽ2, as can be seen from (2.7). This

implies the vanishing of the Ricci scalar for the associated four-dimensional geometry.

Inserting the relations (3.18) and (3.19) into (3.17) results in

E5 =
π2

2G5

(

v3
2 v3

)1/2
, (3.20)

which exactly equals the macroscopic entropy Smacro = A5/(4G5) of the rotating black

hole, where A5 denotes the horizon area.

Introducing the abbreviations

Ω =
2G2

5

π2

1√
v2 v3

q̂A GAB q̂B ,

∆ = 8R2 √v2 v3 GAB CA CB ,

Γ =
8G5

π

[

−1

2
J − 1

2
RCA

(

qA G
−1/3
5 − 2πR2

3G5
CABC CB CC

)]

, (3.21)
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we obtain from (3.18) and (3.19) the following two equations,

3(v2 v3)
3/2 − 3

Γ2

(v2v3)3/2
= Ω − ∆ ,

√
v2 v3 (6v2 − 3v2v3) = Ω + 2∆ . (3.22)

Solving the first of these equations yields (with v2v3 positive)

(v2 v3)
3/2 =

1

6
(Ω − ∆) +

√

Γ2 +
1

36
(Ω − ∆)2 . (3.23)

Inserting this into the second equation of (3.22) gives

(

v3
2 v3

)1/2
=

1

4
(Ω + ∆) +

1

2

√

Γ2 +
1

36
(Ω − ∆)2 . (3.24)

Thus, by taking suitable ratios of (3.23) and (3.24), we obtain v2 and v3 expressed in

terms of Ω,∆ and Γ. Now, recalling the definition of X̂A in (2.1) and using (2.5), we have√
v2 v3 GAB = 2R ĜAB , where

ĜAB = −CABC X̂C + 9
X̂A X̂B

V̂
, (3.25)

with X̂A and V̂ defined in (A.19). Therefore Ω,∆ and Γ, and hence also the horizon

area (3.24), are entirely determined in terms of the scalar fields X̂A and CA and the

charges. The horizon values of X̂A and CA are in turn determined in terms of the charges

by solving the respective extremization equations. The extremization equations for the CA

are given by (3.14), while the extremization equations for the X̂A are obtained by setting

∂X̂AE5 = 0. Rather than computing the horizon values in this way, we will determine them

by solving the associated attractor equations in four dimensions. This will be done in the

next subsection.

Finally, let us consider static black holes. When the rotation parameter α is set to

zero, we have Γ = 0 and (3.16) can be abbreviated as DAB CB = 0. In the following we

will assume that DAB is invertible so that CA = 0. We then infer from (3.19) and (3.21)

that v3 = 1, ∆ = 0 and

Ω =
G

4/3
5

π2R
qA ĜAB qB , (3.26)

which is the black hole potential in five dimensions for static electrically charged black

holes [15]. Using (3.11), we obtain for (3.20),

E5 =
2π

3
QA ĜAB QB . (3.27)

From (A.18) and (3.25) we infer that ĜAB = −ImNAB. With the help of (A.18), (A.19)

and (3.24) we compute

ImN00 = −V̂ =
1

12π

G5

R3
QA [(ImN )−1]AB QB , (3.28)

– 7 –
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where we used ImNA0 = 0. It follows that we can rewrite (3.27) as

E5 = −2π

4

[

(P 0)2 ImN00 + QA

[

(ImN )−1
]AB

QB

]

, (3.29)

where

P 0 = p0 R

G
1/2
4

, p0 = 1 . (3.30)

Thus, (3.27) precisely equals the four-dimensional black hole potential [16 – 18],

E4 = −2π

4

(

QI −NIKPK
)

[

(ImN )−1
]IJ

(

QJ − N̄JLPL
)

, (3.31)

for the case at hand with CA = 0 and non-vanishing charges (P 0, QA), as it should. In (3.31)

(P I , QJ) denote the magnetic and electric charges in four dimensions, respectively.

3.2 Attractor equations and examples

The four-dimensional entropy function (3.31) can be rewritten into [11]

E4 = π
[

Σ +
(

QI − FIJPJ
)

N IK
(

QK − F̄KLPL
)]

, (3.32)

where

Σ = −i
(

Ȳ IFI − Y I F̄I

)

− QI(Y
I + Ȳ I) + P I(FI + F̄I) ,

NIJ = i
(

F̄IJ − FIJ

)

,

QI = QI + i(FI − F̄I) ,

PI = P I + i(Y I − Ȳ I) . (3.33)

For the notation cf. appendix A. The scalar fields (2.2) are expressed in terms of the Y I

by zA = Y A/Y 0. The horizon values of the scalar fields X̂A and CA can be conveniently

determined by solving the attractor equations for the Y I in four dimensions, which read [19,

11]

−2(QJ − FJK PK) + i(QI − F̄IM PM )N IR FRSJ NSK(QK − F̄KL PL) = 0 . (3.34)

Contracting with Y I results in

i
(

Ȳ I FI − Y I F̄I

)

= P I FI − QI Y I . (3.35)

Supersymmetric black holes satisfy QI = PJ = 0.

In the following, we will discuss two classes of four-dimensional non-supersymmetric

extremal black holes which are connected to five-dimensional black holes. These have a

non-vanishing P 0 given by (3.30). The first class consists of black holes with non-vanishing

charges (P 0, QA) in heterotic-like theories with prepotential F (Y ) = −Y 1Y aηabY
b/Y 0,

where ηab denotes a symmetric matrix with the inverse ηab (ηabηbc = δa
c ) and a, b = 2, . . . , n.

– 8 –
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These black holes are static in five dimensions. Taking P 0 > 0 and Q1 Qa ηab Qb < 0, we

find that the attractor equations (3.34) are solved by

Y 0 = − i

4
P 0 ,

Y 1 =
1

8

√

−P 0 Qa ηab Qb

Q1
,

Y a = −1

4

√

− P 0 Q1

Qc ηcd Qd
ηab Qb . (3.36)

The zA read,

z1 = i X̂1 =
i

2

√

−Qa ηab Qb

P 0 Q1
,

za = i X̂a = −i

√

− Q1

P 0 Qc ηcd Qd
ηab Qb . (3.37)

Requiring V̂ > 0 for consistency (see (A.19)) restricts the charges to Qa ηab Qb > 0 and

Q1 < 0. Using (3.36), (3.32), (3.30) and (3.11), the entropy is computed to be

E5 = π
√

−P 0 Q1 Qa ηab Qb =

√
π

2

√

−q1 qa ηab qb . (3.38)

Upon performing the rescaling qA → (4π)1/3 qA, the entropy (3.38) attains its standard

form. For the case n = 3 with non-vanishing η23 = η32 = 1
2 , the so-called STU model, the

above solution has been given in [20] and found to be stable. Requiring the moduli S, T

and U to lie in the Kähler cone imposes the additional restriction Q2 < 0 and Q3 < 0.

The solution (3.36) is non-supersymmetric in four dimensions, since QA 6= 0,P0 6=
0. We now check the supersymmetry of the associated five-dimensional solution. An

electrically charged supersymmetric solution in five dimensions satisfies the condition AA =

0 [21 – 24], where in our conventions (see appendix A)

AA = qA − 2 e6φ Z(X̂) X̂A , Z(X̂) = qA X̂A , (3.39)

with X̂A given in (A.19). Computing AA for the solution (3.36) using (3.11), we find

that AA = G
1/3
5 G

−1/2
4 (QA + 3P 0 X̂A) = 0. The entropy (3.38) takes the supersymmetric

form E5 = (2π)1/2 3−3/2 |qA XA|3/2. Solutions which are supersymmetric from a higher-

dimensional point of view, but non-supersymmetric from a lower-dimensional point of

view, have been discussed in [25, 26] and occur when dimensionally reducing geometries

that are U(1)-fibrations, as in our case. In string theory one can generate new solutions

from a given one by using duality transformations. Two configurations which are related in

this manner must be both supersymmetric or both non-supersymmetric in four dimensions.

Hence, the configurations obtained in this way from the (P 0, QA) solution (3.36) will be

non-supersymmetric in four dimensions. Those with a positive P 0 can be lifted to five-

dimensional solutions which, depending on the specific duality transformation, may or may

not be supersymmetric.
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The second class of solutions we consider consists of black holes with non-vanishing

charges (P 0, Q0). They correspond to rotating black holes in five dimensions, of the type

discussed in [27 – 29, 6, 30 – 32], which are not supersymmetric. We use the prepotential

F (Y ) = −Y 1 Y 2 Y 3/Y 0. Taking P 0 Q0 > 0 and RezA = 0, we find that the attractor

equations (3.34) are solved by

Y 0 = −(1 − i)

8
P 0 ,

Y 1 Y 2 Y 3 = i(1 − i)3
(P 0)2 Q0

512
. (3.40)

Observe that the attractor equations do not determine the individual values Y 1, Y 2 and

Y 3, because the entropy function has two flat directions. The coupling constant ImN00 and

the entropy are, however, determined in terms of the charges. The former takes the value

−ImN00 = iz1 z2 z3 = Q0/P
0 > 0. We also find that V̂ > 0, as required by consistency.

From (3.23) and (3.24) we obtain v2 = 1
2 |Γ|2/3 and v3 = 2, and from (3.18) we have

α = sgn Γ. Using (3.40), (3.32), (3.30) and (3.11), the entropy is computed to be

E5 = π P 0 Q0 = π J . (3.41)

We close this section by displaying the relation between the five-dimensional quantity

Z(X̂) e6φ appearing in (3.39) and the four-dimensional Y 0 for the case of static black holes

with CA = 0. From (3.35) we obtain (with Q0 = PA = 0, and with P 0 given by (3.30))

Z(X̂) e6φ =
i

2

G
1/3
5

G
1/2
4

(

−8Y 0 + i
R√
G4

)

, (3.42)

where we used Y 0 = −Ȳ 0, which follows from the reality of (3.42). For a supersymmetric

solution in four dimensions, P0 = 0 and hence Y 0 = iP 0/2, so that

Z(X̂) e6φ = 6π R2 G
−2/3
5 . (3.43)

4. Conclusions

In the context of N = 2 supergravity theories with cubic prepotentials, we used the relation

between extremal black hole solutions in four and in five dimensions to define the entropy

function for rotating extremal black holes in terms of the entropy function for static black

holes in four dimensions. We focused on rotating electrically charged black holes with one

independent angular momentum parameter, for simplicity, and we discussed two classes

of solutions. General charged static black holes in four dimensions also carry magnetic

charges PA, and these charges can be easily incorporated into the discussion given above

by adding a term −PA R cos θ dϕ to both (3.3) and (3.4). Their entropy function is given

by (3.32), and the entropy function of the associated five-dimensional rotating black holes

is then defined by (3.2).

In five dimensions, rotating extremal black holes may carry two independent angular

momentum parameters [33]. These black holes will be connected to rotating extremal black
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holes in four dimensions. The entropy function of these five-dimensional black holes can

then again be defined in terms of the entropy function of the associated rotating four-

dimensional black holes. The entropy function for rotating attractors in four dimensions

has recently been discussed in [6].
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A. N = 2 supergravity actions and dimensional reduction

Here we review various elements of N = 2 supergravity theories in four and in five dimen-

sions. We also review the reduction of the five-dimensional action based on very special

geometry to the four-dimensional action based on special geometry. This will explain our

conventions, which differ slightly from the ones used in [14, 34, 35, 9]. For notational

simplicity, we drop the subscripts on the five- and four-dimensional gauge fields.

The five-dimensional N = 2 supergravity action is based on the cubic polynomial [14]

V =
1

6
CABCXAXBXC , (A.1)

where the XA are real scalar fields satisfying the constraint V = constant. The five-

dimensional gauge couplings GAB(X) are given by

GAB(X) = −1

2
∂A∂B log V |V =constant , (A.2)

and hence,

GAB(X) = V −1

(

−1

2
CABCXC +

9

2

XAXB

V

)

, (A.3)

where we defined

XA =
1

6
CABCXBXC . (A.4)

Observe that

GAB XAXB =
3

2
, XA∂iXA = 0 . (A.5)

Here ∂iX
A = ∂

∂ϕi X
A(ϕ), where ϕi denote the physical scalar fields with target space metric

gij = GAB ∂iX
A ∂jX

B .

The bosonic part of the five-dimensional N = 2 supergravity action reads

S5 =
1

8πG5

[
∫

d5x
√
−G

(

1

2
RG − 1

2
GAB ∂MXA ∂MXB − 1

4
GAB FA

MNFBMN

)

−1

6

∫

CABC FA ∧ FB ∧ AC

]

, (A.6)
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where G denotes the determinant of the spacetime metric in five dimensions.

The four-dimensional N = 2 supergravity action, on the other hand, is based on the

prepotential [36, 37]

F (Y ) = −1

6

CABC Y AY BY C

Y 0
, (A.7)

where the Y I are complex scalar fields (I = 0, A). The four-dimensional gauge couplings

NIJ are given by

NIJ = F̄IJ + 2i
Im FIK Im FJL Y KY L

Im FMN Y MY N
, (A.8)

where FI = ∂F/∂Y I , FIJ = ∂2F/∂Y I∂Y J . The four-dimensional physical scalar fields zA

are

zA =
Y A

Y 0
. (A.9)

The bosonic part of the four-dimensional N = 2 supergravity action reads

S4 =
1

8πG4

∫

d4x
√−g

(

1

2
Rg − gAB̄ ∂µzA∂µz̄B +

1

4
ImNIJ F I

µν F Jµν

−1

4
ReNIJ F I

µν F̃ Jµν

)

, (A.10)

where g denotes the determinant of the spacetime metric in four dimensions, and where

F̃ Jab = 1
2εabcdF

Jcd with ε0123 = 1. The quantity gAB̄ is the Kähler metric gAB̄ = ∂
∂zA

∂
∂z̄B K

computed from the Kähler potential K(z, z̄). For the prepotential (A.7), the Kähler po-

tential reads

e−K(z,z̄) =
i

6
CABC(zA − z̄A)(zB − z̄B)(zC − z̄C) . (A.11)

Now we perform the reduction of (A.6) along x5 down to four dimensions using (2.1).

We take the various fields to be independent of the fifth coordinate x5. Setting x5 =

Rψ , 0 ≤ ψ < 4π, we use that the five- and four-dimensional Newton constants are related

by

G5 = 4π R G4 . (A.12)

Reducing the gauge kinetic terms GABFAFB gives rise to a scalar kinetic term of the form

−1

4

√
−GGAB FAFB → −1

2

√−g e4φ GAB ∂µCA∂µCB , (A.13)

whereas reducing RG − GAB∂MXA∂MXB gives rise to scalar kinetic terms for X̂A =

e−2φ XA,

√
−G

(

1

2
RG − 1

2
GAB∂MXA∂MXB

)

→ √−g

(

1

2
Rg −

1

2
e4φ GAB ∂µX̂A ∂µX̂B

)

.(A.14)

Eqs. (A.13) and (A.14) can be combined into

√−g

(

1

2
Rg −

1

2
e4φ GAB ∂µzA ∂µz̄B̄

)

, (A.15)

– 12 –



J
H
E
P
0
5
(
2
0
0
7
)
0
2
5

where zA is defined as in (2.2). Using (A.11) we compute gAB̄ = 1
2e4φ GAB , and

hence (A.15) can be written as

√−g

(

1

2
Rg − gAB̄ ∂µzA ∂µz̄B̄

)

. (A.16)

In addition, reducing RG and GABFAFB also gives rise to the four-dimensional gauge

kinetic terms

√
−G RG → √−g

(

Rg −
1

4
e−6φ F 0 F 0

)

, (A.17)

−1

2

√
−G GAB FA FB → −1

2

√−g e−2φ GAB

[

FAFB − 2CB FA F 0 + CA CB F 0F 0
]

.

This we compare with ImNIJ F I F J in four dimensions. To this end, we compute the

couplings NIJ for the prepotential (A.7) and we express them in terms of the fields X̂A

and CA using (2.2),

N00 = −1

3
CABC CACBCC − i

[

2 e−2φ V GAB CACB + V̂
]

,

N0A =
1

2
CABC CBCC + 2i e−2φ V GAB CB ,

NAB = −CABC CC − 2i e−2φ V GAB , (A.18)

where

V̂ = X̂A X̂A , X̂A =
1

6
CABCX̂BX̂C , e−6φ = V −1 V̂ . (A.19)

Hence we find that the sum of the field strength terms on the right hand side of (A.17)

equals
1

4V
ImNIJ F I F J . (A.20)

Thus, requiring the matching of the five-dimensional gauge kinetic term −1
4GABFAFB

in (A.6) with the four-dimensional gauge kinetic term 1
4ImNIJ F I F J in (A.10) yields the

normalization condition

2V = 1 . (A.21)

Next, we reduce the five-dimensional Chern-Simons term CABC FA ∧ FB ∧ AC in (A.6).

Using (2.1), we first observe that CABC FA ∧ FB ∧ AC
ψdψ can be expressed in terms of

four-dimensional gauge fields as,

CABC FA ∧ FB ∧ AC
ψ dψ = R CABC [ CA FB ∧ FC − CA CB FC ∧ F 0

+
1

3
CA CB CC F 0 ∧ F 0 ] ∧ dψ , (A.22)

up to a total derivative term. The field strengths on the right hand side are four-

dimensional, and AC
ψ = RCC . Using

CABC CA FB ∧ FC ∧ dψ = −1

2
dψ d4x

√−g CABC CA FB F̃C , (A.23)
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and similarly for the other terms in (A.22), we obtain (up to a total derivative)

CABC FA ∧ FB ∧ AC
ψ dψ =

1

2
R dψ d4x

√−g ReNIJ F I F̃ J , (A.24)

where we used (A.18). Then, using

CABC FA ∧ FB ∧ AC = 3CABC FA ∧ FB ∧ AC
ψ dψ , (A.25)

which holds up to a total derivative term, we obtain

1

6G5

∫

CABC FA ∧ FB ∧ AC =
1

4G4

∫

d4x
√−g ReNIJ F I F̃ J . (A.26)

Thus, dimensional reduction of (A.6) yields (A.10), up to boundary terms.
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